IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Magnetopolarons in quantum dots: comparison of polaronic effects from three to quasi-zero

dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys.: Condens. Matter 5 8031
(http://iopscience.iop.org/0953-8984/5/43/015)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 11/05/2010 at 02:07

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/43
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matter 5 (1993) 80318046, Printed in the UK

Magnetopolarens in quantum dots: comparison of polaronic
effects from three to quasi-zero dimensions

L Wendlert§, A V Chaplikt], R Haupt} and O Hipdlitof

t Departamento de Fisica e Ciéncia dos Materiais, Instituto de Fisica & Quimica de S&o
Carlos, Universidade de Sao Paulo, Caixa Postal 369, 13560-970 Sag Carlos, S4o Paulo,
Brazil

1 Institut fiir FestkOrpertheorie und Theoretische Optik, Friedrich-Schiller-Universitit Jena,
Max-Wien-Platz 1, D-07743 Jena, Federal Republic of Germany

Received 19 April 1993, in final form 28 July 1993

Abstract. The interaction of electrons, confined in a quasi-zero-dimensional quantum dot and
longitudinal-optical (L0) phonens, placed in a perpendicular magnetic field, is studied within
second-order perturbation theory. Analytic and numerical results are presented for the polaron
correction to the Landau levels and the pelaron cyclotron mass. It is shown that whether
cyclotron resonance results in a resonant magnetopolaron or not depends on the ratio of the
confinement energy and the Lo phenon energy. The polaronic effects in a magnetic field are
compared for all dimensionalities from three to quasi-zero, realizable in the experiment. It is
found that these effects increase with reducing the dimensionality. Special attention is directed
to the weak-magnetic-field limit and the limit of a weak confinement potential,

1. Introduoction

In recent years there has been considerable effort to understand the energy spectrum and
the collective excitations of the quasi-two-dimensional (Q2b) electron gas in semiconductor
heterostructures, quantum wells and superlaitices. Through advances in high-resolution
submicrometre lithography the fabrication of semiconductor nanostructures in which
quantum confinement of the electronic motion in narrow quantum-well wires (QWws) and
quantum dots (QDs) is realizable. By now the realization of this additional lateral electron
confinement with widths below 100 nm for metal-oxide-semiconductor (MOS) siructures on
Si and [1I-V compound structures on heterojunctions of GaAs and MOS structures on InSb
is well established [1,2]. Since such widths are in the order of the de Broglie wavelength
and are less than the mean free path of the electrons at low temperatures, the physical
properties of the electron systems in these QWWs and QDs exhibit quasi-one-dimensional
(Q1D) and quasi-zero-dimensional (QoD) behaviour. With the Q1D and QOD systems, electron
gases of all four dimensionalities from three-dimensional (3D} to Q0D are artificially realized
by technological means.

The energy leveis of an electron in a strong magnetic field are quantized into Landau
levels. If the electron is in a polar semiconductor it also interacts with the optical phonons.
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Hence, the Landau levels are modified by polaronic effects in the following manner: (i)
they are shifted to lower energy; (ii) the slopes of the Landau leve] energies versus magnetic
field are changed because of the mass renormalization of the electron; (iii) the Landau levels
do not cross the energy level formed by the lowest Landau level plus one optical phonon,
because of von Neumann’s anticrossing principle; and (iv} the Landau levels are pinned to
the energy of that virtual level in high magnetic fields.

The polaron mass is usually experimentally determined by cyclotron resonance. In
such an experiment the separation of adjacent Landau levels is measured as a function of
the magnetic field B. Hence, in polar semiconductors the cyclotron resonance frequency
w; = eBfmy, with m; the polaron cyclotron mass, is affected by the interaction of the
electrons with the optical phonons. For the 3D [3-7] and Q2D [6-9] polarons, considerable
work has been done. Two different situations are commonly distinguished in 3D and
Q2D systems: the non-resonant magnetopolaron in low magnetic fields and the resonant
magnetopolaron in quantizing magnetic fields when the cyclotron energy is approximately
equal to the optical phonon energy, bat in Q1D systems whether a resonant case is possible
or not depends on the confinement potential [10].

2. Theory

In this paper we investigate magnetopoiarons in QDs with an isotropic parabolic confinement
potential in the two lateral directions. Because the electron is confined within the QD,
the magnetopolaron is a bound magnetopolaron. The electron-phonon correction will
be calculated within second-order perturbation theory for arbitrary magnetic fields. The
unperturbed system, a single electron confined in a zero thickness x—y plane along the z
direction at z = 0 and confined in a lateral parabolic quantum well potential in the x—y
plane in the presence of a quantizing perpendicuiar magnetic field B = (0, 0, B) neglecting
the Zeeman spin-splitting, is described by the Hamiltonian

H. = (1/2m ) + eA) + V (x) (1)

with m, the effective conduction band-edge mass, A the vector potential with B =V x A
and V(&) = V(x,y) + V(z) the confining potential. The lateral parabolic quantum-well
potential in the x—y plane is given by V(x, ) = im.Q2(x? + »%). For the vector potential

A we use the symmetric gauge A = %(— y.x, 0B, The eigenenergies of the unperturbed
Hamiltonian H, are given by {11]

Engm = h(2N, + Im| + 1) + Lhwem Ne=0,1,2,... m=0,%1,%2,... (2)
where @ = [(e)? + Q%]"/? is the hybrid frequency with &, = eB/m, the cyclotron
frequency, and N is the radial and m the azimuthal quantum number, respectively.

According to the symmetry properties of the Hamiltonian H,, the single-particle wave
function using cylindrical coordinates in the x—y plane reads [11]

(@|Nr, 1} = Wy (x) = Cy,m exp(ime)r!™ expl—(medde /20)r?]
X F[=Np, fmi + 1, (mede/R)r*le(z) (3)

where F(a, b, x) is the confluent hypergeometric function and

Chm = [(Meloc /YD [y N, + [m )/ N2, (4)
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According to the strict confinement assumed in the z direction, |@(z)}2 = &(2) is valid.
From the calculation of the matrix elements (], m’|z;|N;, m) with x; the position vector
in the x~y plane, one finds that the dipole-allowed single-electron transitions for a cyclotron
resonance experiment have transition energies ALy = hd), = %ﬁwc.

Our interest is directed to QDs generated by nanostructured gate electrodes via the field
effect. Hence, the optical phonons interacting with the electrons are these of the original
layered semiconductor structure. Neglecting the effects of interface phonons [12,13] the
Hamiltonian of the electron—phonon interaction including only 3D bulk longitudinal-optical
(LO) phonons reads [14]

12
H, = (4zrarp(ﬁw1.) ) Z exp(xqm)—[al_(q)+ af (—q)] (5)

with @ = (ez/4n'sorp)(l /€00 — 1/&;) fhay, the dimensionless 3D polaron coupling constant,
r, = /mewL) 1/2 the corresponding 3D polaron radius, . the frequency of the LO phonons
and &, and & the high-frequency (optical) and the static dielectric constant, respectively, of
the semiconductor containing the QUD confined electrons. ¢ (g} and az' (g) are the phonon
destruction and creation operators, respectively, ¢ = (gx, gy, ¢;) is the 3D wave vector of the
3D bulk LO phonon and Vi is the volume of the sampie. The magnetopolaron Hamiltonian
is given by

H=H.+Y holaf (@au(g) + ;) + Hep = Ho + Hi. (6)
g
The first two terms represent the unperturbed electron and LO phonon system, Hp, and
H| = Hy, is the electron—phonon interaction Hamiltonian. The energy levels of an electron
are shifted over AEy, , by the interaction with the LO phonons:

En,m =Rc(2N; + |m| + 1) + jhoum + AEy, . )

Within the second-order perturbation theory the energy shift of the level with the quantum
numbers N, m is given by

NN,

2
AEN,,,,_—Z Z ZIM fo)'. | @)

N/=0 pr=—co

The matrix element is M (q) (N{,m'; 14|HypINy, m; Qg). The ket |[Np,ym; ng) =
[Ny, m) @ [ng) describes an unperturbcd statc of Hy composed of an electron in the level
Ne,m and n LO phonons with the momentum #g and the energy Aer, which we denote
(Nr,m;ng). In this paper we only consider weakly polar semiconduciors with o <« 1,
i.e. we are in the weak-coupling limit and so it is sufficient to consider perturbed states
containing not more than one LO phonon, Using the Hamiltonian, equation (5), and the
states described above, the matrix element is given by

23112 2
MY Nr( )= (M) CumChm foodrf de expli(m — m"e]
G 0 o

. e, Mo,
x,lml+imu+fcxp(_ ;lcrz) (*N’,I n ;crz)

x F( 41, 2) expligrzy) ©)
h lq]
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with gy the two-dimensional wave vector in the x—y plane and ¢ = |g;|; r = |&y|. The
energy denominator in (8) is given by

NN,

Do’ = hoor + kS [2N] — No) + |m/| — Iml] + Shae(m’ —m) ~ Ay,m (10)

where the value Ay, depends on the type of perturbation theory used [41: (i1} Aym =0
leads to the Rayleigh—Schridinger perturbation theory (RSPT), (ii) Any, = AEpnn results
in the Wigner—Brillouin perturbation theory (WBPT); and (iii) Anm = AEny, — AERTT
gives an improved Wigner-Brillouin perturbation theory (IWBPT), with AESTT the weak-
coupling electron—phonon correction to the electron ground-state energy calculated within
RSPT. For the ground state AEy o0 = AERT" is valid. It is well known [4] that the RSPT
desribes the ground-state correction for w, — 0 quite well, but it fails for the excited states,
since it is possible that the denominator vanishes for a certain w.. This becomes possible
if the energy level (N, m; Q) of the state |V, m; Og) crosses the energy level (0,0; 14) of
the state |0, 0; 1,) at & + mec/(@N; + 2|m|) = wL/(2N; + im]), but the occurrence of a
level crossing depends strongly on the relation between the LO phonon frequency ¢, and
the confinement frequency 2. This behaviour is very similar to the case of a QWW with
parabolic confinement [10] but different from the 3D and Q2D systems where level crossing
always ocours at N, = o), (N is the number of the Landau level). If resonance occurs,
the electron—phonon interaction leads to a splitting of the degenerate levels and a pinning to
the energy o + hioe + AE&?” . The higher-energy branch is not calculated in this paper,
because of the condition given by equation (12) below. Only the IWBPT gives the correct
pinning behaviour in the weak-coupling limit.

In the experiments the optical transitions Egy — Egx) can be used to determine the
polaron cyclotron mass m} = ¢B/w?. In the following we restrict ourself to the discussion
of these three levels. The level crossing between the energy of the state {0, +1; Og) and that
of |0, 0; 14} occurs under the condition @ > € at w, = (wf — Q?)/wy and that between
the energy of the state [0, —1; Oy} and that of [0, 0; 1g) under the condition w), < Q at

= (% — wd)/wL. For wy < S in the first case and wy, > 2 in the second there is no
level crossing, Therefore, a level crossing occurs either for the transition Egg — Eg 4 or
for the transition Fgg — Ep 1.

For the calculation of the polaron cyclotron mass it is necessary to calculate the energy
shifts AEg and AEp .. Starting with equation (9) for the matrix element M N,O (g), we
obtain

IMNY(P = [(dmary (B )2/ Va)/(N! + m'DIN1)
X (hqi [4meide)™ 1t exp(—hgq [2meie)|q |, (11)

Using this result in equation (8) for the energy shift A Eqgg it is possible to calculate exactly
the sums over the quantum numbers N/ and m’. We convert the denominator of equation (8)
by the integral

N,M f dr exp(—DNiN) (12)
Dm
where DN ‘% . 0 must be fulfilled. This means that the results are limited to the study

of the Landau levels below the level (0,0; 14). Replacing the sum over g by an integral

according to
> — % f3 f dquqnfzndcﬂ[ dg
— " @y @ny
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we obtain

AEg = —arp(hoL)? fo dr expl—(ho — Ag)t] Z Z

om0 (Vi F |’" N+ DN
204
xfmdq hqﬁz " exp | — hqﬁ
0 ! Am ., p 2med. |
x exp{—[(2N! + Im'Dhide + Shoom'lt). (13)

To perform the sum over the quantum numbers N and m’ we introduce the new quantum
numbers p and s, defined by p 45 = |m’| + 2N/ and p — s = m’. Consequently, we have
form' 20, p=N/+m'ands =N/ and form’ <0, p=Nands =N/ —m". If N > o0
and —co < m’ < 0o, the new quantum numbers s and p go independently from O to oo,
The result is that all terms are factorized and we finally obtain

w1 2ary (heo)?

ABgy = —
00 3

12

X f dt exp[—(hor—Agp)?] / (2 [l — exp(—hd.t) cosh(s hwct)}) .
0 e c

(14)

Thus the interesting energy correction is given by a 1D integral,
Now we consider the energy shift AEg 1 . We again start with equation (9) for the

matrix element M,Z‘ri[(q). This matrix element is simply calculated and reads
Moy @1 = [mary i)’/ Vo) [(N] + m'DIN!]
x (hgy /4memc)lm 20~ 1[ Im’] + N —hqj /4mewc]2exp(—hq /2mewc)/IQI
(15)

Using this expression in equation (8) where we replace the denominator again by an integral,
equation (12), and introducing again the new quantum numbers p and s, we can exactly
carry out both sums over p and 5. The resulting expression for the energy shift reads

?rifzar o )? [ .
8By =~ [t expi-Gion, - his % Yo — Aowa)]
N : n -
x [1 + exp(—ha,t) cosh(zhw.t)] T —hét)
Lhad
' 1/2
X cosh(%hwct)]) (16)

and we have again only a remaining 1D integral. The expressions for A Egp, equation (14),
and AFg.;, equation (16), are valid for all magnetic fields because in our calculation no
simplifying approximations are made,
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Figere 1. The first unperturbed Landau tevels (Ny, #1; ng) as a function of the magnetic field in
a GaAs-Gay75Aly25As Qb (bold curves). The fine curve comesponds 1o the unpetturbed level
{0.0; 15). The Landau levels are plotted in figure 1(a) for £ = 0.5y and in figure 1¢b) for
= 1.5w.

3. Numerical results for the polaron correction to the Landau levels

For numerical calculation we have used a nanostructured GaAs-Ga;_, Al, As heterostructure
(GaAs: e = 0.07, r, = 3.987 nm, hw. = 36.17 meV, m. = 0.06624mg) in which the
electrons are confined within GaAs. Because in the experimentally realized structures
typically AQ < 4 meV for GaAs is valid we have the resonance for the transition
Ep = Egy at o = (0} — Q%)/o0y.

In figure 1 the unperturbed Landau levels for one electron jn the QD are plotted as a
function of the magnetic field for two different confinement potentials: (a) 22 = 0.5, and
(b) & = 1.5wr. For B = 0 the levels are (N + I)-fold degenerate at the 2D harmonic
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oscillator energy levels &y = RN + 1) with N = 2N, + |m|. In the opposite limit,
B — oo, the Landan levels of the electron in a QD approach those of the 2D system:
EP = hwc(N-i-%) with N = N,+%(|m|+m). Consequently, for B — oo each Landau level
is degenerate (without spin degeneracy) according to the degeneracy factor N, = (eB/h)A
with A = L.L, the area of the x—y plane. In the case of w_ > Q, figure I(a), the
level crossing occurs between the states |0, 0; 1) and |0, +1; O5) under consideration at
Wy = (wﬁ — Q%) /w.. But this figure also shows that higher levels cross the level (0, 0; 14).
This is possible because the levels with negative m and N, = 0 have a negative slope
for small magnetic fields and approach the lowest Landau level of 2D electrons for large
magnetic fields. In figure 1(a) such a level crossing occurs between the states [0, 0; 1g4)
and |Q, m; Og) with m < —2. In figure 1(b) the situation w; < £ is plotted. In this case
the level crossing occurs between the states |0,0; 15) and [0, m; Og) with m < O. It is
evident that the crossing occurs for larger |mj at larger magnetic fields. Hence, we have
two different types of level crossing: with increasing magnetic field, the state |0, 0; 14} is
crossed from a level (i) from the lower energy side and (ii) from the higher energy side.
From the material parameters of GaAs it is obvious that the situation plotted in figure 1(a)
can only be experimentally realized up to now. All following calculations and conclusions
are valid for this case 2 < wr.

The calculated Landau levels for one electron in different QDs including polaron effects
are plotted in figure 2. The fine full curves show the unperiurbed levels |N;, m; 04},
the fine broken curves the unperturbed level |0,0; 14} and the bold curves are the
corresponding perturbed levels. The perturbed levels are obtained from equations (14)
and (16), respectively. From figure 2 it is apparent that (i) the perturbed levels, the
magnetopolaron levels, are shifted to lower energies ~ AEyn(w. = 0) independent
of the magnetic field and (ii} with increasing magnetic field the state |0, -+1; 05} mixes
strongly with |0, 0; 154}, becoming resonant near the unperturbed level crossing at @, =
(wﬁ — 92)/wy. The Landau levels are repelled from the level (0, 0; 14} and pinned 1o the
energy oy + hd. + AEg! in the following manner. The levels for which, at B = 0,
Enm = AQEN 4 [m| + 1) < Blan, + ) is valid, are pinned to this level from the lower-
energy side, but the levels crossing the level (0, 0; 1,4} at a certain magnetic field and for
which, at B = 0, &y, = 2Q(N; + |m| + 1) > A{w, + Q) is valid, are pinned from the
higher-energy side to the level (0,0; 15). According to the condition for the validity of
equation (12) we are limited to the study of thie polaron correction to the states below the
energy of the state |0, 0; 14}, Figure 2 shows that the polaron comection to the Landau levels
at B = 0 decreases with increasing quantum number (N, im|). This behaviour is different
from the well known 3D and 2D magnetopolaron [6] for which the polaron corrections at
B = 0 are independent of the quantum number N. Comparing figures 2(a) and 2(b) one can
see that with increasing €2 of the confinement potential the mixing of the levels |0, 0; 1)
and |0, +1;0,} becomes stronger for smaller magnetic fields. For the chosen examples
the crossing of the unperturbed levels occurs at the magnetic field 8 = B, for the GaAs—
Ga; Al As QD with B, =204 T for 2 =4 meV and B, = 18.4 T for 72 = 12 meV.

In cyclotron resonance experiments the transition of electrons between the Landan levels
is observed. Hence, the transition is detected between the plotted magnetopolaron levels
(perturbed or renormalized levels) of figure 2. The energy difference between the two
successive Landau levels Egiy — Eqp = h(&@, £ g000) + AEgx) — AEq is plotted in figure 3
as a function of the magnetic field for different GaAs-Ga;_;Al;As QDs. The bold curves
represent the renormalized energy difference and the fine curves those of the unperturbed
levels. Because AEgy — AEy > 0 at B = 0, the energy difference is larger between the
renormalized levels than between the unperturbed levels. The energy difference Eg.1 — Ego
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Figure 2. The first magnetopolaron levels Egy, Egx (bold curves) as a function of the magnetic
field in a CaAs-GagsAlyasAs Qo for AQ = 4 meV (a) and AR = 12 meV (b). The
cotresponding unperturbed Landau levels are plotted by fine full (0, 0; Og), (0, %1;04) and
broken (0. 0; 14) curves.

becomes equal to the LO phonon energy A in the limit B — oo, whereas Eq_1 — Eg
becomes zero in this limit. For the GaAs QDs [15] there are two possibilities for measuring
the electron—phonon-interaction-induced resonance effects by new experiments:

(i) For the configuration of Meurer er al [15] with a subband separation of only
hQ = 1.6 meV it is necessary to use higher magnetic fields of B, = 21 T.
(i) If one could produce QDs with larger subtband separations of for instacce A2 =

%hw]_ 7 18 meV one could reduce the necessary critical magnetic field to B, &~ 17 T to
measure the resonance effect.
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Figure 3. Energy differences Egqy — Egg and Ep—| ~ Eqp between the Landau levels for the
perturbed states (magnetopolaron, bald curves) and the unperturbed states {electron, fine curves)
for a GaAs—Gay rsAly2sAs QD with fif2 = 4 meV (a) and 32 = 12 meV (b).

4. Polaron cyclotron mass and analytic results for weak magnetic field

4.1. Polaron cyclotron mass in quantum dots

In the experiments the optical transition Egyp — Eps; can be used to determine the polaron
cyclotron mass mp. If one uses the transition Eqy — Eoy, the cyclotron mass of a resonant
magnetopolaron is obtained. The corresponding mass can be calculated by

me = ehBf[Eos1 — Eop — Q% /(Eos1 — Eco))]- an

If on the other hand only the transition Egg — Eg-; is detected, the resulting effective mass
of a non-resonant magnetopolaron is obtained. This mass is given by

mt = enB/H*Q2/(Ey-1 — Eoo) — (Eo—1 — Eoo)l. {18)
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If both transitions are measured, it is possible to define the polaron cyclotron mass according
to

my = ehB/(Egr1 — Ep-1). (19)

This definition also provides the resonant magnetopolaron. It is obvious that the polaron
cyclotron mass depends on the used optical transition. If one compares the definitions
of the polaron cyclotron mass of the magnetopolaron, (17}-(19), one finds the following
physical differences. For this discussion we need first the limits of AEg and A Eoy,; for
weak magnetic fields and weak lateral confinement. If w,/w;, < | is valid, non-degenerate
perturbation theory, i.e. RSPT, has to be used and, consequently, one has Ax.y = 0. If one
expands AEg and AFgy; in a power series according to £ = /w, we obtain for the
electron—phonon correction (14) to the Landau level Egp

AEg = —Lahaim (DA /™ 2/ T(1/n + HIE° + P /mn~2 /16T (1/n + )]
x [1 =297 110 /m+ 1) =¥ /n+ DI+ A/ + 1) — 8 (/0 + DT
+ W1+ 1) — ¥ (/0 + DIE + OEY). (20)

Herein n = Q/fw, ['(x) is the gamma function and ¥(x) is the psi function with ¥'(x)
its derivative. Note that odd powers of & are absent for the ground-state renormalization
in contrast to the 3D and 2D magnetopolarcen. For a weak confinement energy, §2 < wy,
equation (20} can be further expanded in a power series of n:

AEg = —sahwur{[| + g0+ 151 + OO + G/64mI1 — £n + 018 + OEh).
@1

We note that this expression for the ground-state energy contains the result AEy =
—%ahwu’r for @, — 0 and & — 0, which is the correct energy correction of a strict
2D polaron within second-order RSPT.

The corrections A Ep.j, equation (16}, due to electron—phonon interaction to the energy
levels &y for a weak magnetic field are given by

AEgy = —Sahoum (T /™ 2/ T + DIA - 39)/(1 - )P
£ {[C(1/mn~2 /4T (1/n + H1/2(1 — 0 H@E = 3n)(1 — ¥ (/0 + §)
— W/l + n*JE" + OE). (22)

Note that the electron—phonon corrections AEys; for the energy levels £ou are only

different from one another in the sign of the odd powers of §&. In the case of a weak
confinement potential we obtain from equation {22)

AEoyy = —tahorm ([l + dn+ 20’ + O £ 11+ 3n+ En’ + 0D + OEHL.
(23)

Following the electron—phonon contribution to the splitting between two successive Landau
levels Teads:

AEpy) — A = jehert{[l — 30 — 0% + Om)]E°
F i1+ In+ 20? + O)E + OED)} (24)

AEgp — ABg-y = ~goharn{[1 + n+ 20’ + O())E' + O, 23)
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These results allow us to discuss the physical meaning of the different polaron cyclotron
masses. The masses defined in equations (17)—(19) result for vanishing electron~phonon
interaction ¢ — O in the ordinary electron conduction band-edge mass: m? — m,. For
vanishing magnetic field the masses m; defined by equations (17) and (18) vanish. This is
true because the denominator of the right-hand side of equations (17) and (18) is a constant
for B — 0. In contrast to this unusual behaviour of the polaron cyclotron mass, defined by
equations {17) and (18), that defined by equation (19) reaches, for B = 0

mefme = (1 — pan[ITQ/mn ™ T /7 + D20 — )2
X (4 =3 =¥/ + 5 — A+ 7+ 0EHD (26)

which contains for weak confinement energy, 2 < ., the result
me/me = 1/I1 — goar ({1 + §n + §n’ + O + OEM. (27)

Hence, we have the cosrect effective-mass correction of a strict 2D polaron (m*/m,) =
1/(1 - %w:ﬂr). For this reason we use the polaron cyclotron mass, defined in equation (19),
because this definition provides the correct limiting cases. We note that for zero magnetic
field and finite confinement (R > 0) it is impossible to define a polaron mass, which has
a kinetic nature, because of the entirely quantized spectrum of the polaron, but for 8 > 0,
classically, the electrons move on skipping orbits along the edge of the QD due to the lateral
confinement and the Lorentz force.
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A0 = OmeV
1'00 1 L 1 1
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Figure 4. Polaron cyclotron mass of the Qob magnetopolaron versus magnetic field for a
Gahs-Gap 75 AlpssAs Qp for different confinement energies 72 = 12 meV, A%t = 4 meV and
752 = 0 meV corresponding to the polaron cyclotron mass of a 20 magnetopolaron,

This QoD polaron cyclotron mass, defined in equation (19), is shown in figure 4, The
increase of the mass with increasing magnetic field is the polaron-induced non-parabolicity
in the absence of the conduction-band non-parabolicity. The strong enhancement of the
potaron cyclotron mass around @, = (wf — 2%)/wy is a consequence of the pinning of the
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Landau level Egy; to the energy fiw + hd + AER . If one compares the results for
RSPT, WBPT and IWBPT, figure 5, we can conclude that for Q0D systems the same differences
between the different types of perturbation theory are valid as for 3D, 2D and QID systems
[4,10,16]: RSPT overestimates the contribution of the polaron effects to the polaron mass
near the resonance and WBPT underestimates the polaron effects whereas IWBPT is a good
improvement to WBPT.
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IWBPT

1.15¢
EUJ
< 110}
5 WBPT

1.05

1_00 L 4 : I

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 5. Polaron cyclotron mass of the Qub magnetopolaron versus magnetic field for a
GaAs-GaggsAlyasAs Qo for different types of perturbation theory, rser, wBpT and iwspT, for
F& =12 meV,

4.2, Comparison of magnetopolarons from 3D to Q0D

The energy levels of an electron in a magnetic field interacting with 30 bulk LO phonons
are

En(k:) = hoo(N + 3) + 1°K2 /2me + AEy (k) in 3D
En  =hwdN+ 1)+ AEy in 2D 8
Enlke) =hade(N + 1) + B2 /2 + AEwn(k:) in QID

Enm =h@2N, +im| 4+ 1)+ Shom 4+ AEy, in Q0D

where &, = (w? + 22)'/2 is the hybrid frequency and m = m,(d@,/ )2, In the QID case we
have assumed a parabolic confinement potential in the lateral direction: V(y) = im 2y
and a strict confinement in the z direction. In the 3D and in the 2D case, each Landau level
is degenerated according to the degeneracy factor M. From equation (28) it follows that in
3D and Q1D semiconductor systems there exists a phonon continuum which has a threshold
energy of Ey = fien, + %hwc + AEp and Ey = b + %hc}')c + AEy, respectively, but in
the 2D and Q0D case there is no phonon continuum in the spectrum. The polaron cyclotron
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resonance frequency Ae = Ey — Ey_y in 3D and 2D, and the polaron hybrid frequency
he)? = Ey — En—y in QID, define a polaron cyclotron mass according to

m; =ehB/(Exy — En-1) in 3D and 2D (29a)
and [10]
mt = ehB/(Ey — Ex-1)* — (2] in QiD. (29b)

The corresponding expressions for a Q0D magnetopolaron are given in equations (17)-{19).
In the weak-magnetic-field limit w./w. < | the electron—phonon correction in second-order
RSPT to the Landau level Ex(0) in 3D is given by [6]

AEN(0) = —ahwL{l + 2N + 1) + 5 (18N2 + 18N — 1)§°
+ [(90N3 + 135N% — 37N — 6)/2016]&% + O@E"). (30)

Consequently, the electron-phonon contribution to the splitting between two successive
Landau levels reads

AEN(0) — AEy_1(0) = —fahaw {1 + FNE + 7 [135(N — (N + 1) + 94162 + O(&H)).
(3D

If we use the transition Ep — E; 1o obtain the polaron cyclotron mass, the mass is given
for small magnetic fields by

mi/me = 1/{1 — la(l + 3& + L& + O@E*)}. (32)

This expression contains for B — 0 the well known 3D polaron mass.
The analogous results for the strict 2D magnetopolarons read [6]

AEy = —Sahwum{l + 2N + DE + L[ISN(N + 1) + 112

+[52N + DOON? + 10N — 1)/1024)8° + OEY} (33)

AEy — AEn- = —gohoug{l + ENE + 30N ~ 1)* 4 60(N — 1) + 29362 + O(¢*)
' (34)

mgfme = 1/{1 — dam (1 + 36 + &> + O]} (35)

which yield for B — 0 the well known result for the 2D polaron mass.
In the weak-magnetic-field limit the electron-phonon correction in second-order RSPT
to the first two Landau levels Eg(0) and E;(0) in 2 QD QwWw is given by [10]

- 1 = AYLE 0
AEG(0) = wh%ﬁﬁ[j‘; dt exp( ’I) ﬁK(tl)E

+ f°° 4 SRt (2 — 5t + 287 — (4 — 6tYyexp(—1) + (2 — ) exp(~21)
0

At tlexp(—t) — 1 +1]
22— (43t + D exp(—t) + (2 - ) exp(—21)
t32[exp(—t) — 1 +£]42

+ O(e“J] (36)

X K{)+

K'(h))&z
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and

2 co ¢ sinh? it
AE((Q) — AEND) = _dth«/fﬁ[fo dr exp (—;) :

1

"1)E + O 37
xmf{(n)’f + O )] (37

with

= Jexp(—=t) — 1 +t/+/1.

Herein K {x) is the complete elliptic integral of the first kind and K'(x) its first derivative.
In the case of weak confinement potential, we obtain for vanishing magnetic field

AE(0) = —jahoLa[l + (1/4v2m)n'? + Zen
+ (11/1536v2Zm )" — (933/262 144)7 + O(n*™)] (38)

and

AE(0) — AE(0) = —ahay £ 2mn 21 + 5v2mn'? + B2

+ (3675716 384) 20’ + O] (39)

The polaron cyclotron mass in the weak-magnetic-field limit is [10]

m? 2han, [ ( t) sinh? 1t ,
—==f! - dt —= K'(t
e g{ Edide & P\ et — 1 + 1172 “

Qhe, [ t sinh? 3¢ .o
g [2" N fo dr exp ("5) Hexp() — 1T “‘)]s
-1/2
+ O(s’)} : (40)

If we compare the electron—phonon corrections in second-order RSPT to the Landau levels
in the weak-magnetic-field limit for the dimensionalities 3D to QOD, it is to be seen that the
power series on § = we/ay, contain all powers for 1D, equation (30), 2D, equation (33}, and
for the Landau levels &4 of QOD, equation (22}, but only even powers of £ for the Landau
level £y of the QOD case, equation {20), and for ali levels of the QID case, equations (36) and
(37). Note that the polaron corrections in 3D and 2D are larger for higher Landau levels for
finite magnetic fields but equal for vanishing magnetic field. For Q1D the polaron correction
to the Landau levels is different for all levels including the case of vanishing magnetic field,
equations (37) and (39). This is also true for the QOD Landau levels £y, , with different N
{N = 2N; 4+ |m|). The levels with the same value N, but a different combination of radial
and azimuthal quantum numbers, N; and m, have the same electron-phonon correction for
B — 0. The electron—phonon contribution to the energy splitting between two successive
Landau levels vapishes for vanishing magnetic field (¢ — 0) in 3D, equation (31), in 2D,
equation (34), and in Q0D for AEy; — AFEg_j, equation (25), but this difference remains
finite in QOD for AEgy) ~ AEgy, equation (24), and in QID, equation (37). This different
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Figure 6. Polaron cyclotron mass of the 1p, 20, QID and QoD magnetopolaron versus magnetic
field for a GaAs-Gay 7sAlo2sAs heterostructure, For the Qip and QoD magnetopolaron 22 =
12 meV is used.

behaviour of the rerormalization of the energy difference of two successive Landan levels
due to electron—phonon coupling results in differencies of the polaron cyclotron mass. It
is obvious that in the case B — 0 the polaron cyclotron mass results only in the polaron
mass if the electron-phonon contribution to the energy splitting vanishes. Hence, in the
cyclotron-resonance experiment it is possible to measure the polaron mass in 3D and 2D and
in Q0D only if one uses both transitions, Egy — Eo4y and Egy — Ep—j, but in the Q1D and
the Q0D only using one transition, it is not possible to measure the polaron mass.

In figure 6 we piotted the polaron cyclowron mass (calculated within IWBPT) for the
3D, 2D, Q1D and QOD magnetopolaron versus the magnetic field. This figure shows clearly
the enhancement of the mass renomnalization due to polaronic effects on reducing the
dimensionality. The Q1D polaron cyclotron mass increases with decreasing magnetic field
for small magnetic fields resulting from the geometrical confinement. The geometrical
confinement also results in a different renormalization of the different Landau levels in the
limit B — (. Hence, there exists a critical cyclotron frequency {10], which is a function of
the geometrical confinement frequency 2, defining a lower bound for the magnetic field to
measure the polaron cyclotron mass in the experiment.

5. Conclusions

We have calculated the polaron corrections to the Landau levels and cyclotron masses of QoD
magnetopolarons in QDs. Our results are valid for zero temperature and arbitrary magnetic
field strength. It is shown that the Landau levels £y, with different N = 2N, 4+ |m|
have different pelaron corrections for all magnetic fields, but the levels with the same
quantum number N have the same energy correction for B — 0. Hence, the electron-
phonon contribution to the energy splitting between two successive Landau levels differs
for vanishing magnetic fields in dependence on the combined quanturmn number N of both
levels. According to the different possible transitions, different polaron cyclotron masses
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can be defined and measured in the experiment, but only if the corresponding electron—
phonon contribution to the energy splitting vanishes does the limit of B — 0 contain the
polaron mass. Level crossing between the states |0, +1; 05} and |0, 0; 1,), and consequently
the existence of a resonant magnetopolaron arises either under the condition w, > £ at
Wy = (wﬁ—ﬂz)/wl, for the states {0, +1; 0g) and |0, 0; 1) orew, < R atwe = (S?.Z-—a)%)/wl,
for the states |0, —1; 04) and |0, 0; 1,}. This resonant cyclotron frequency w. depends on
the confinement frequency 2 and can be much smaller than in the 2D and 3D case where
the level crossing occurs at @, = w_. It is shown that the polaron cyclotron mass increases
with reduced dimensionality of the magnetopolaron.

To improve on these results one has to include in the calculation the non-parabolicity
of the conduction band (band-structure effect), the non-parabolicity of the confinement
potential, deviations from the circularity of the QD, the finite width of the QD in the growth
direction and, if many electrons are present, occupation and screening effects.
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