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Abstract The interaction of electrons. canfined in a quasi-m-dimensional quantum dot and 
longitudinal-optid (w) phonons. placed in a perpendicular magnetic field, is studied within 
second-order perturbation theory. Analytic and numerical results are presented for the polaron 
correction to the Landau levels and the polaron cyclotron mass. It is shown thal whelhw 
cyclomn resonance resulu in a resonant magnetopolaron or not depends on the ratio of the 
Confinement energy and the w phonon energy. The polaronic effects in a magnetic field are 
compared for all dimensionalities from three 10 quasi-zero, realizable in the experiment. I1 is 
found [hat these effecls increase with reducing lhe dimensionality. Special aaention is direcled 
to the weak-magnetic-field limil and lhe limit of a weak confinement potential. 

1. Introduction 

In recent years there has  been considerable effolt to understand the energy spectrum and 
the collective excitations of the quasi-two-dimensional (QZD) electron gas in semiconductor 
heterostmctures, quantum wells and superlattices. Through advances in high-resolution 
submicrometre lithography the fabrication of semiconductor nanostructures in which 
quantum confinement of the electronic motion in narrow quantum-well wires (QWWs) and 
quantum dots (QDs) is realizable. By now the realization of this additional lateral electron 
confinement with widths below I00 nm for metal-oxide-semiconductor (MOS) structures on 
Si and IE-V compound structure$ on heterojunctions of GaAs and MOS snuctures on InSb 
is well established [ 1.21. Since such widths are in the order of the de Broglie wavelength 
and are less than the mean free path of the electrons at low temperatures, the physical 
properties of the electron systems in these QWWs and QDs exhibit quasi-one-dimensional 
(QlD) and quasi-zero-dimensional (QOD) behaviour. With the QID and QOD systems, electron 
gases of all four dimensionalities from three-dimensional (3D) to QOD are artificially realized 
by technological means. 

The energy levels of an electron in a strong magnetic field are quantized into Landau 
levels. If the electron is in a polar semiconductor it also interacts with the optical phonons. 
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According to the strict confinement assumed in the z direction, Irp(z)12 = 8(r )  is valid. 
From the’calculation of the matrix elements (N: .m’ lq lNr .  m) with 111 the position vector 
in the x-y plane, one finds that the dipole-allowed single-electron transitions for a cyclotron 
resonance experiment have transition energies A&* =hi& & $hoc. 

Our interest is directed to QDS generated by nanostructured gate electrodes via the field 
effect. Hence, the optical phonons interacting with the electrons are these of the original 
layered semiconductor stmcture. Neglecting the effects of interface phonons [12,13] the 
Hamiltonian of the electron-phonon interaction including only 3D bulk longitudinal-optical 
(U)) phonons reads [ 141 

with a = $(e2 f4xsorp)(l /cm - 1 /Es) f h q  the dimensionless 3D polaron coupling constant, 
rp = ( h / h . o ~ ) ‘ / ~  the corresponding 3D polaron radius, oL the frequency ofthe LO phonons 
and and E$ the high-frequency (optical) and the static dielectric constant, respectively, of 
the semiconductor containing the QOD confined electrons. a L ( q )  and a t ( q )  are the phonon 
destruction and creation operators, respectively, q = (qx,  qy. qz) is the 3D wave vector of the 
3D bulk LO phonon and Vc is the volume of the sample. The magnetopolaron Hamiltonian 
is given by 

The first two terms represent the unperturbed electron and LO phonon system, Ho, and 
H I  = Hep is the electron-phonon interaction Hamiltonian. The energy levels of an electron 
are shifted over A EN,,“ by the interaction with the LO phonons: 

EN,.” = h 4 ( 2 N , + I m l + I ) + I h o , m + A E ~ , . , .  (7) 

Within the second-order perturbation theory the energy shift of the level with the quantum 
numbers N,, m is given by 

N ’ N  The matrix element is Mmh‘(q) = (N:,m’; IqlHeplNr,m;Oq). The ket [ N r , m ;  np) = 
INr, m)  8 In,) describes an unperturbed state of Ho composed of an electron in the level 
N l , m  and n Lo phonons with the momentum hq and the energy h m  which we denote 
(Nr, m; nq). In this paper we only consider weakly polar semiconductors with a << 1, 
i.e. we are in the weakcoupling limit and so it is sufficient to consider perturbed states 
containing not more than one LO phonon. Using the Hamiltonian, equation (5). and the 
states described above, the matrix element is given by 
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with 411 the two-dimensional wave vector in the x-y plane and 411 = lqlil; r = lql. The 
energy denominator in (8) is given by 

(10) D,,,,, - hwL + hG&?(N; - N,)  + lm'l - lmll+ fhw,(m' - m) - AN,,,, 

where the value AN,* depends on the type of perturbation theory used [41: (i)  AN,^ = 0 
leads to the RayleighSchrijdinger perturbation theory (RSFT); (ii)  AN,^ = AEN" results 
in the Wigner-Brillouin perturbation theory (WBPT); and (iii)  AN,^ = AEN,,,, - AEhSSpT 
gives an improved Wigner-Bnllouin perturbation theory (IwBm),  with A EESpT the weak- 
coupling electron-phonon correction to the electron ground-state energy calculated within 
RSW. For the ground state AEiYBSpT = A E E m  is valid. It is well known [4] that the RSFT 
desribes the ground-state comction for w, + 0 quite well, but it fails for the excited states, 
since it is possible that the denominator vanishes for a certain 0,. This becomes possible 
if the energy level (N, ,  m; 0,) of the state INr. m ;  0,) crosses the energy level (0,O 1,) of 
the state 10,O lq)  at Gc + mwc/(4N, + 21mI) = y / ( Z N ,  + Iml), but the occurrence of a 
level crossing depends strongly on the relation between the LO phonon frequency WL and 
the confinement frequency 52. This behaviour is very similar to the case of a QWW with 
parabolic confinement [IO] but different from the 3D and Q2D systems where level crossing 
always occurs at N o ,  = OJL ( N  is the number of the Landau level). If resonance occurs, 
the electron-phonon interaction leads to a splitting of the degenerate levels and a pinning to 
the energy h q  + hGc + A ERpr .  The higher-energy branch is not calculated in this paper, 
because of the condition given by equation (12) below. Only the IWBFT gives the correct 
pinning behaviour in the weak-coupling limit. 

In the experiments the optical transitions Em + EO*, can be used to determine the 
polaron cyclotron mass m: = eB/w;. In the following we restrict ourself to the discussion 
of these three levels. The level crossing between the energy of the state (0, + I ;  0,) and that 
of 10.0; 1 4 )  occurs under the condition OL 52 at w, = (ut - Q 2 ) / w ~  and that between 
the energy of the state 10, -1; 0,) and that of IO,@ 1,) under the condition OL < 52 at 
w, = (Q2 - w t ) / w ~ .  For WL < 52 in the first case and WL 52 in the second there is no 
level crossing. Therefore, a level crossing occurs either for the transition Eo0 -+ EO,+, or 
for the transition Em + Eo.-,. 

For the calculation of the polaron cyclotron mass it is necessary to calculate the energy 
shifts AEm and AE0.h.. Starting with equation (9) for the matrix element M$(q), we 
obtain 

IMt;:(q)l2 = [ ( 4 i r a l b ( h w ~ ) ' / V c ) / ( N :  + Im'l)!N;!] 

N ; N r  - 

x (fiq~/4m,G,)l"lfZN;exp( - h q f / 2 m & ~ ~ ) / l q 1 ~ .  ( 1 1 )  

Using this result in equation (8) for the energy shift AEoo it is possible to calculate exactly 
the sums over the quantum numbers N; and m'. We convert the denominator of equation (8) 
by the integral 

where D$; > 0 must be fulfilled. This means that the results are limited to the study 
of the Landau levels below the level (0,0; IQ). Replacing the sum over q by an integral 
according to 
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we obtain 

2N:+lm'l 

x lm dpll (*) 4m& exp (-*) 2m& 

x exp[-[(2N: + Im'l)ii& + $'~o,m'lrl. (13) 

To perform the sum over the quantum numbers Ni and m' we introduce the new quantum 
numbers p and s, defined by p + s = lm'l+ 2N; and p - s = m'. Consequently, we have 
form' > 0, p = Ni+m' ands  = N: and form' < 0, p = N: ands  = N:-m'. If N: -+ 00 

and -CO < m' < 00, the new quantum numbers s and p go independently from 0 to 00. 

The result is that all terms are factorized and we finally obtain 

(14) 

Thus the interesting energy correction is given by a ID integral. 

matrix element M,:,, (q). This matrix element is simply calculated and reads 
Now we consider the energy shift AEo,+l. We again start with equation (9) for the 

N'O 

lM;$,(q)l2 = [(4nayrp(tto~)'/V~)/(N: + Im'l)!N:!l 

@q;/4me&)lm'l+W-l [flm'l+ 1 N: - ~ 9 ~ / 4 m e ~ ~ 1 2 e x p ( - ~ 9 f / 2 m ~ ~ ~ ) / l q l z .  

(15) 

Using this expression in equation (8) where we replace the denominator again by an integral, 
equation (12). and introducing again the new quantum numbers p and s, we can exactly 
cany out both sums over p and s. The resulting expression for the energy shift reads 

and we have again only a remaining ID integral. The expressions for AEoo, equation (14). 
and AEo,l, equation (16), are valid for all magnetic fields because in our calculation no 
simplifying approximations are made. 
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Figure 1. The first unpenurbed Landau levels (N,, m; n,J as a function of the magnetic field in 
a GaAs4jao.nAlo.uAs QD (bold curves). The fine curve comesponds 10 the unperturbed level 
(0.0: I,,). The Landau levels are plotfed in figwe I(a) for 52 = 0.5- and in figure I@) for 
Cl = 1.51%. 

3. Numerical results for the polaron correction to the Landau levels 

For numerical calculation we have used a nanostructured GaAs-Ga,-,AI,As heterostructure 
(GaAs: ci = 0.07, rp = 3.987 nm, hoL = 36.17 meV. m, = 0.06624mo) in which the 
electrons are confined within GaAs. Because in the experimentally realized structures 
typically hsl < 4 meV for GaAs is valid we have the resonance for the transition 
Em -+ Eo+, at w, = CO:- S~*)/OL. 

In figure 1 the unperturbed Landau levels for one electron in the QD are plotted as a 
function of the magnetic field for two different confinement potentials: (a) 52 = 0 . 5 ~ ~  and 
(b) 52 = 1.50~. For B = 0 the levels are (N + I)-fold degenerate at the 2D harmonic 
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oscillator energy levels &N = fiR(N + I )  with N = 2N,  + [mi. In the opposite limit, 
B + 03, the Landau levels of the electron in a QD approach those of the 2~ system: 
&io = ho,(N+f)  with N = N,+f( lml+m).  Consequently, for B --* 00 each Landau level 
is degenerate (without spin degeneracy) according to the degeneracy factor NL = ( e B / h ) A  
with A = L,L, the area of the x-y plane. In the case of q z Q. figure I(a), the 
level crossing occurs between the states 10.0; I , )  and 10, + I ;  O,,) under consideration at 
o, = (U: - R*)/wL. But this figure also shows that higher levels cross the level (0,O 1,). 
This is possible because the levels with negative m and Nr = 0 have a negative slope 
for small magnetic fields and approach the lowest Landau level of XI electrons for large 
magnetic fields. In figure I(a) such a level crossing occurs between the states IO, 0; I,) 
and 10, m; 0,) with m < -2. In figure I(b) the situation WL c Q is plotted. In this case 
the level crossing occurs between the states 10.0; I,,) and 10, m; 0,) with m < 0. It is 
evident that the crossing occurs for larger Im/ at larger magnetic fields. Hence, we have 
two different types of level crossing: with increasing magnetic field. the state 10.0 I,) is 
crossed from a level (i) from the lower energy side and (ii) from the higher energy side. 
From the material parameters of GaAs it is obvious that the situation plotted in figure I(a) 
can only be experimentally realized up to now. All following calculations and conclusions 
are valid for this case R < WL. 

The calculated Landau levels for one electron in different QDs including polaron effects 
are plotted in figure 2. The fine full curves show the unperturbed levels INr, m; 0,). 
the fine broken curves the unperturbed level 10.0; lp) and the bold curves are the 
corresponding perturbed levels. The perturbed levels are obtained from equations (14) 
and (16). respectively. From figure 2 it is apparent that (i) the perturbed levels, the 
magnetopolaron levels, are shifted to lower energies Y A E N . ~ ( W ~  = 0) independent 
of the magnetic field and (ii) with increasing magnetic field the state 10, +I;  0,) mixes 
strongly with IO, 0: I,,), becoming resonant near the unperturbed level crossing at oc = 
(WE - R*)/wL. The Landau levels are repelled from the level (0,0; I,,) and pinned to the 
energy ~ W L  + f i& + A E::" in the following manner. The levels for which, at B = 0, 
EN,,,, = hR(2N, + Iml + I )  < h(m -t S2) is valid, are pinned to this level from the lower- 
energy side, but the levels crossing the level (0,0; Is) at a certain magnetic field and for 
which, at B = 0, &N," = hS2(2Nr + Iml + 1) > h ( y .  + Q) is valid, are pinned from the 
higher-energy side to the level (0.0; I,). According to the condition for the validity of 
equation (12) we are limited to the study of the polaron correction to the states below the 
energy of the state (0,O; I,). Figure 2 shows that the polamn correction to the Landau levels 
at 6 = 0 decreases with increasing quantum number ( N , ,  Iml). This behaviour is different 
from the well known 3D and 2D magnetopolaron [6] for which the polaron corrections at 
B = 0 are independent of the quantum number N. Comparing figures 2(a) and 2(b) one can 
see that with increasing R of the confinement potential the mixing of the levels IO,% Is) 
and IO, + I ;  0,) becomes stronger for smaller magnetic fields. For the chosen examples 
the crossing of the unperturbed levels occurs at the magnetic field B = E, for the GaAs- 
Gal-,AI,As QO with Bc = 20.4 T for hS2 = 4 meV and E, = 18.4 T for f iQ = 12 meV. 

In cyclotron resonance experiments the transition of electrons between the Landau levels 
is observed. Hence, the transition is detected between the plotted magnetopolaron levels 
(perturbed or renormalized levels) of figure 2. The energy difference between the two 
successive Landau levels EO+) - Eo0 =E(&* ioc) + AEo*I - AEoo is plotted in figure 3 
as a function of the magnetic field for different GaAs-Gal-,AI,As QDS. The bold curves 
represent the renormalized energy difference and the fine curves those of the unperturbed 
levels. Because A&+, - AEw > 0 at B = 0. the energy difference is larger between the 
renormalized levels than between the unperturbed levels. The energy difference Eo+, - Eo0 
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Figure 2. The first magnetopolamn levels Em. Eo* (bold curves) as a function of lhe magnetic 
field in a GaAs-Gao.,5Alu,~As QD for hn = 4 meV (a) and An = 12 meV (b). The 
corresponding unperturbed Landau levels are plotted by fine full (0.0; Oq), (0, il; Oq)  and 
broken (0.0; 1,) curve?. 

becomes equal to the U3 phonon energy h q .  in the limit B + 00, whereas Eo-, - Em 
becomes zero in this limit. For the GaAs QDs [I51 there are two possibilities for measuring 
the electron-phonon-interaction-induced resonance effects by new experiments: 

(i) For the configuration of Meurer et ai [15] with a subband separation of only 
hQ = 1.6 meV it is necessary to use higher magnetic fields of B, % 21 T. 

(ii) If one could produce QDs with larger subband separations of for instance hQ = 
ifiy % 18 meV one could reduce the necessary critical magnetic field to B, % 17 T to 
measure the resonance effect. 
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Figure 3. Energy differences EO+I - Eau and Eo-! - Eau between the Landau levels for the 
penurbed states (magnetopolaron, bald curves) and the unpenurted sbtes (eleclron, fine NN-) 
for a C ~ A ~ - G ~ , ~ ~ I A I ~ . ~ ~ A S  QD with fin = 4 meV (a) and TtS= 12 meV (b). 

4. Polaron cyclotron mass and analytic results for weak magnetic field 

4.1. Polaron cyclotron mass in quantum dots 

In the experiments the optical transition Em -+ Eo*! can be used to determine the polaron 
cyclotron mass m:. If one uses the transition Eo0 + EO+! the cyclotron mass of a resonant 
magnetopolaron i s  obtained. The corresponding mass can be calculated by 

(17) 
If on the other hand only the transition Em - Eo-! is detected, the resulting effective mass 
of a non-resonant magnetopolaron is obtained. This mass is given by 

(18) 

met = ef2B/[Eoil  - EOo - h2Q2/(Eo+l  - Em)]. 

mE = ~ ~ ~ B / [ ~ Z * S ~ ~ / ( E O - I  - Em) - (EO-, - Eoo)] .  
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If both transitions are measured, it is possible to define the polaron cyclotron mass according 
to 

mf = ehB/(Eo+l - Eo-]) .  (19) 

This definition also provides the resonant magnetopolaron. It is obvious that the polaron 
cyclotron mass depends on the used optical transition. If one compares the definitions 
of the polaron cyclotron mass of the magnetopolaron, (17)--(19), one finds the following 
physical differences. For this discussion we need first the limits of AEw and AEo*, for 
weak magnetic fields and weak lateral confinement. If wJwL << I is valid, non-degenerate 
perturbation theory, i.e. RSPT, has  to be used and, consequently, one has AN,M = 0. If one 
expands A& and AEoii in a power series according to t = OJWL, we obtain for the 
electron-phonon correction (14) to the Landau level Eo0 

AEw = --a ; fiWLR([r(i /q)V-1/2/r(i /TJ t ;)it0 t [ ~ ( I / T J ) v - ~ / ~ / I ~ ~ ( ~ / v  t $1 

x U1 - 29-] lW(l /q+ 1) - YU/V t 9 1  t [ W l h  + 1) - W / q  t 9 1 2  

t [ W ' ( w l  t 1) - Y'(l/TJ t l/2)1IDt2 t at4) ) .  (20) 

Herein q = Q/oL, r ( x )  is the gamma function and W ( x )  is the psi function with Y'(x} 
its derivative. Note that odd powers of are absent for the ground-state renormalization 
in contrast to the 3D and 2D magnetopolaron. For a weak confinement energy, c( a, 
equation (20) can be further expanded in a power series of q: 

AEoo = - & Y ~ w L R I [ I  + $7 t + O(q 3 0  )I6 t (3/64q)11 - &V + O ( T J ~ ) I ~ ~  + O(t4)1. 

(21) 

We note that this expression for the ground-state energy contains the result AEoo = 
-$ahwLr for w, -+ 0 and C2 -+ 0, which is the comct energy correction of a strict 
ZD polaron within second-order RSPT. 

The corrections A Eo+], equation (16), due to electron-phonon interaction to the energy 
levels EO*] for a weak magnetic field are given by 

AEoki = -$ahwLx([r(l/r))V-'/2/r(1/)1 t - !q)/(l - o)1to 
* I ~ ~ / I I ) V - ~ ' ~ / ~ ~ ( I / V  t 91/2(1 - d21((4 - ~s)(I - t l ) [ ~ ( i / ~  t f) 

- W / V ) I  + V 2 K 1  + O(t2)). (22) 

Note that the electron-phonon corrections AEosl for the energy levels &*I are only 
different from one another in the sign of the odd powers of e. In the case of a weak 
confinement potential we obtain from equation (22) 

AEWI = - $ f f i w ~ x ( [ l  + ~ T J  t ~ q 2 + O ( ~ 3 ) l t o *  :Cl + t "7 185 2 t O(~')19' + O(t2)t .  

(23) 

Following the electron-phonon contribution to the splitting between two successive Landau 
levels reads: 
AEoil - AEw = $rho~x([l  - i q  - = q  35 2 t O(q3)]t0 

T $ [ I +  ;q + = V  t o(q3)1t1 + o(c2)) (24) 

(25) 

1x5 2 

- &Eo-I = - $ a h ~ n l [ l  t %V + ~9 185 2 t O(q3)1t' t OQ')). 
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These results allow us to discuss the physical meaning of the different polaron cyclotron 
masses. The masses defined in equations (17H19) result for vanishing electron-phonon 
interaction (Y + 0 in the ordinary electron conduction band-edge mass: m: + me. For 
vanishing magnetic field the masses m: defined by equations (17) and (18) vanish. This is 
true because the denominator of the right-hand si& of equations (17) and ( I  8) is a constant 
for B + 0. In contrast to this unusual behaviour of the polaron cyclotron mass, defined by 
equations (17) and (18), that defined by equation (19) reaches, for B + 0 

m:/m, = ( I  - ~~~u[~(I/s)s-~’~/~(I/s + 92(1  - s ) ~ ]  

x ((4- 3 m  - S)[W/S t f )  - WS)I t S * E ~  + u(t2)n)-’ (26) 

which contains for weak confinement energy, Q << &, the result 

mI/m,  = I/UI - +“I + is + SS’ + 0 ( ~ ~ ) 1 t O  + o(tZ)}n. (27) 

Hence, we have the correct effective-mass correction of a strict 2~ polaron (m*/m,)  = 
l/(l - $cur). For this reason we use the polaron cyclotron mass, defined in equation (19). 
because this definition provides the correct limiting cases. We note that for zero magnetic 
field and finite confinement (Q > 0) it is impossible to define a polaron mass, which has 
a kinetic nature, because of the entirely quantized spectrum of the polaron, but for B > 0, 
classically, the electrons move on skipping orbits along the edge of the QD due to the lateral 
confinement and the Lorentz force. 

1.20 

1.15 - 

U 

E 
.U 1.10- 
e 
\ 

1.05 
, 

hR = OmeV 
1.00 

0.0 0.2 0.4 0.6 0.8 1.0 
w c l w r  

Figure 4. Polaron cyclotron mass of the WID magnetopolaron Venus magnetic field for a 
GaAs-Gao,~~Alo,~As QD for different confinemem energies fm = 12 meV, hSt = 4 meV and 
hR = 0 meV corresponding to the polaron cyclotron mass of a 2o magnetopolaron. 

This QOD polaron cyclotron mass, defined in equation (19), is shown in figure 4. The 
increase of the mass with increasing magnetic field is the polaron-induced non-parabolicity 
in the absence of the conduction-band non-parabolicity. The strong enhancement of the 
polaron cyclotron mass around o, = (4 - a’)/% is a consequence of the pinning of the 
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Landau level Eo+,  to the energy h w  +hi& + AEhSpT. If one compares the results for 
RSPT, WBPT and IWBPT. figure 5, we can conclude that for QOD systems the same differences 
between the different types of perturbation theory are valid as for 3D, 2D and QID systems 
[4, IO, 161: RSPT overestimates the contribution of the polaron effects to the polaron mass 
near the resonance and WBPT underestimates the polaron effects whereas IWBPT is a g o d  
improvement to WBPT. 

1.001 
0.0 0.2 0.4 O.G 0.8 1.0 

W C b L  

Figure 5. Polamn cyclotron m m  of the Q l l ~  magnetopolaron versus magnetic field for a 
GaAs-GawsAluzsAs QD for different types of penurbation theory, RSFT. w ~ m  and ~ m m ,  for 
ns2 = 12 meV. 

4.2. Comparison of magnetopolaronsfrom 3D to QOD 

The energy levels of an electron in a magnetic field interacting with 3D bulk LO phonons 
are 

EN@,) = h d N  + 4) t h2k:/Zmt + AEN(k,) in 3D 

E N  hoc(N + f )  + AEN in 2D 

EN(k, )  = h&(N + 4) + h2kz/2& + AEw(k,) 

 EN,.^ = f i3c(2Nr + Iml+ 1) + f h c m  -k AEN,,, 

(28) 
in QID 

in QOD 

where ;I, = (wf + Qz)’/’ is the hybrid frequency and h = m,(&c/Q)2. In the QID case we 
have assumed a parabolic confinement potential in the lateral direction: V ( y )  = fm,S2*y2 
and a strict confinement in the z direction. In the 3D and in the 2D case, each Landau level 
is degenerated according to the degeneracy factor NL. From equation (28) it follows that in 
3D and QlD semiconductor systems there exists a phonon continuum which has a threshold 
energy of &h = h a  t ;hoc + AE,  and Eh = hwL + fh& + A&. respectively, but in 
the 2D and QOO case there is no phonon continuum in the spectrum. The polaron cyclotron 
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resonance frequency ho,* = E N  - EN-I  in 3D and ZD, and the polaron hybrid frequency 
hijr = EN - EN-] in QID, define a polaron cyclotron mass according to 

m; = ehB/(EN - E N - , )  in 3D and ZD (290) 

and [IO] 

m: = e f iB/[ (EN - - ( f i ~ ) ~ ] ” ~  in QID. (29b) 

The corresponding expressions for a QQD magnetopolaron are given in equations (17H19). 
In the weak-magnetic-field limit o c / w ~  << I the electron-phonon correction in second-order 
RSPT to the Landau level EN(O) in 3D is given by [6] 

AE,v(O) = -&wL(~ + &(ZN+ 1)e + &j(18N2 + 18N - l)ez 

+ [(90N3 + 13513’ - 37N -6)/2016]t3 + O(t4)). (30) 

Consequently, the electron-phonon contribution to the splitting between two successive 
Landau levels reads 

AEN(O)-AEN-I(O) = - ~ a h w ~ ~ [ 1 + ~ N ~ + ~ [ 1 3 5 ( N - I ) ( N + 1 ) + 9 4 ] ~ ~ + 6 ( ~ ~ ~ l .  

(31) 

If we use the transition Eo + E l  to obtain the polaron cyclotron mass, the mass is given 
for small magnetic fields by 

m l / m ,  = I/{I - +(I + + gfz + 0(t3)1. (32) 

This expression contains for B + 0 the well known 3D polaron mass. 
The analogous results for the strict 2D magnetopolarons read [6] 

BEN = - & h w ~ n [ l  2 + i ( 2 N  + 1)t + & [ l 8 N ( N  + I )  + l]e2 

+ l5(2N + l)(lON1 + ION - 1)/1024]e3 + O(e4)} (33) 

AEN - AEN-I  = -@w~nt[l+ %Nt  + &[30(N - 1)’ + 60(N - I )  + 291tz +0(93)) 
(34) 

(35) mT/m, = 1/(1 - $ c m [ ~  + it + ~ ~ 2 + o ( e 3 ) ] ]  
which yield for B -+ 0 the well known result for the ZD polaron mass. 

to the first two Landau levels Eo(0) and El(0) in a QlO QWW is given by [IO] 
In the weak-magnetic-field limit the electron-phonon correction in second-order RSFT 

2 - 5r -+ 2t2 - (4 - 6t) exp(-t) + (2 - 1 )  exp(-Zt) 

KYrl ))e2 
t[exp(-t) - 1 + t ]  

2 - 2t - (4 - 31 + 9)  exp(-r) + (2 - I) exp(-2r) 
NZ[exp(-t) - 1 + t]i/Z x K(ti)  + 
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and 

2 [ lm ( ;) sinh*ft 
drexp -- - 

f 
AEi(0) - AEo(0) = -&ut- 

fifi 

with 

tl = Jexp(-t) - I + t/&. 

Herein K(x)  is the complete elliptic integral of the first kind and K‘(x) its first derivative. 
In the case of weak confinement potential, we obtain for vanishing magnetic field 

AEo(0) = - ~ L Y ~ W L Z [ ~  + (l/4&)q1” + 
+ (1 1/1536&)q3/2 - (933/262 144)s’ + O(qs12)1 

and 

AEi(0) - AEo(0) = -ahWLkz/Z;;qi/2[1 + $./2;;,’/’ + 289 384 

+ (3675/16384)&q3’2 + O(q2)].  

The polaron cyclotron mass in the weak-magnetic-field limit is [IO] 

If we compare the electron-phonon corrections in second-order RSFT to the Landau levels 
in the weak-magnetic-field limit for the dimensionalities 3D to QOD, it is to be seen that the 
power series on 1 = o C / q  contain all powers for 3D, equation (30), ZD, equation (33), and 
for the Landau levels EO*, of QOD, equation (22), but only even powers of 5 for the Landau 
level &OO of the QOD case, equation (20), and for all levels of the QlD case, equations (36) and 
(37). Note that the polaron corrections in 3D and 2D are larger for higher Landau levels for 
finite magnetic fields but equal for vanishing magnetic field. For QID the polaron correction 
to the Landau levels is different for all levels including the case of vanishing magnetic field, 
equations (37) and (39). This is also true for the QOD Landau levels EN,.,,, with different N 
( N  = 2Nr + Iml). The levels with the same value N ,  but a different combination of radial 
and azimuthal quantum numbers, N, and m, have the same electron-phonon correction for 
B + 0. The electron-phonon contribution to the energy splitting between two successive 
Landau levels vanishes for vanishing magnetic field (6 0) in 3 ~ .  equation (31). in ZD, 
equation (34). and in QOD for AEo+l - AEo-1, equation (B), but this difference remains 
finite in QOD for AEo*i - AEoo, equation (24). and in QID, equation (37). This different 



Ma,qneropolurons in quantum dots 8045 

1.15 

_.__ 
0.0 0.2 0.4 0.6 0.8 1.0 

W C b L  

Figure 6. Polaron cyclotmn mass of the 30. w. QID and QnD magnetopolaron versus magnetic 
field for a CaAs.Ga~,,sAlo~~As heterosmcture. For the pi0 and W D  magnebpolaron hfi = 
12 meV is used. 

behaviour of the renormalization of the energy difference of two successive Landau levels 
due to electron-phonon coupling results in differencies of the polaron cyclotron mass. It 
is obvious that in the case B + 0 the polaron cyclotron mass results only in the polaron 
mass if the electron-phonon contribution to the energy splitting vanishes. Hence, in the 
cyclotron-resonance experiment it is possible to measure the polaron mass in 3D and ZD and 
in QOD only if one uses both transitions, EQO -P EO+! and E Q ~  -r Eo-1, but in the QlD and 
the QOD only using one transition, it is not possible to measure the polaron mass. 

In figure 6 we plotted the polaron cyclotron mass (calculated within IWBPT) for the 
3D, ZD, QlD and QOD magnetopolaron versus the magnetic field. This figure shows clearly 
the enhancement of the mass renormalization due to polaronic effects on reducing the 
dimensionality. The QlD polaron cyclotron mass increases with decreasing magnetic field 
for small magnetic fields resulting from the geometrical confinement. The geometrical 
confinement also results in a different renormalization of the different Landau levels i n  the 
limit B + 0. Hence, there exists a critical cyclotron frequency [IO], which is a function of 
the geometrical confinement frequency a, defining a lower bound for the magnetic field to 
measure the polaron cyclotron mass in the experiment. 

5. Conclusions 

We have calculated the polaron corrections to the Landau levels and cyclotron masses of QOD 
magnetopolarons in QDS. Our results are valid for zero temperature and arbitrary magnetic 
field strength. It is shown that the Landau levels  EN,.^ with different N = 2N, i- Iml 
have different polaron corrections for all magnetic fields, but the levels with the same 
quantum number N have the same energy correction for B -r 0. Hence, the electron- 
phonon contribution to the energy splitting between two successive Landau levels differs 
for vanishing magnetic fields in dependence on the combined quantum number N of both 
levels. According to the different possible transitions, different polaron cyclotron masses 
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can be defined and measured in the experiment, but only if the corresponding electron- 
phonon contribution to the energy splitting vanishes does the limit of B + 0 contain the 
polaron mass. Level crossing between the states 10, *I;  0,) and 10.0; Ir), and consequentIy 
the existence of a resonant magnetopolaron arises either under the condition o~ =- 63 at 
o, = ( w ? - Q ’ ) / o ~  for the states 10, + I ;  0,) and 10,O l a )  o r o ~  < 63 at oc = (Q2-&/w 
for the states 10, -1;  0,) and 10.0 I*). This resonant cyclotron frequency w, depends on 
the confinement frequency 51 and can be much smaller than in the ZD and 30 case where 
the level crossing occurs at o, = o~. It is shown that the polaron cyclotron mass increases 
with reduced dimensionality of the magnetopolaron. 

To improve on these results one has to include in the calculation the non-parabolicity 
of the conduction band (band-structure effect), the non-parabolicity of the confinement 
potential, deviations from the circularity of the QD. the finite width of the QD in the growth 
direction and, if many electrons are present, occupation and screening effects. 
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